Properties

Label 3029.a.13.a1.a1
Order $ 233 $
Index $ 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{233}$
Order: \(233\)
Index: \(13\)
Exponent: \(233\)
Generators: $a^{13}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $233$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{3029}$
Order: \(3029\)\(\medspace = 13 \cdot 233 \)
Exponent: \(3029\)\(\medspace = 13 \cdot 233 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 13,233$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{13}$
Order: \(13\)
Exponent: \(13\)
Automorphism Group: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5:D_{12}:C_2$, of order \(2784\)\(\medspace = 2^{5} \cdot 3 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_{232}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{232}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{3029}$
Normalizer:$C_{3029}$
Complements:$C_{13}$
Minimal over-subgroups:$C_{3029}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-1$
Projective image$C_{13}$