Properties

Label 30240.r.12.t1
Order $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{105}:C_{12}$
Order: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(4,7,5,8,6), (1,2,3), (1,2,3)(4,7,6,8)(10,11,15,13,14,12), (9,14,12)(10,13,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_3\times F_7\times S_5$
Order: \(30240\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_7\times S_5$, of order \(30240\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times F_5\times F_7$
Normal closure:$C_{21}:(C_6\times S_5)$
Core:$C_{21}:C_6$
Minimal over-subgroups:$C_{21}:(C_6\times S_5)$$S_3\times F_5\times F_7$
Maximal under-subgroups:$D_{105}:C_6$$C_{105}:C_{12}$$C_{105}:C_{12}$$F_5\times F_7$$D_{105}:C_4$$D_{21}:C_{12}$$D_{15}:C_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_3\times F_7\times S_5$