Properties

Label 3024.bo.48.d1.b1
Order $ 3^{2} \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}:C_3$
Order: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $a^{2}d^{7}, d^{2}, b^{2}c^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3:S_3\times F_7$
Normal closure:$A_4\times C_7:C_3$
Core:$C_7:C_3$
Minimal over-subgroups:$A_4\times C_7:C_3$$C_7:C_3^3$$C_3\times F_7$$C_{21}:C_6$$C_{21}:C_6$
Maximal under-subgroups:$C_7:C_3$$C_{21}$$C_7:C_3$$C_3^2$
Autjugate subgroups:3024.bo.48.d1.a13024.bo.48.d1.c1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$6$
Projective image$C_3:S_4\times F_7$