Properties

Label 300.42.30.a1.c1
Order $ 2 \cdot 5 $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{5}c^{5}, b^{2}c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $A_4\times C_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times \GL(2,5)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{10}^2$
Normal closure:$C_2\times C_{10}$
Core:$C_5$
Minimal over-subgroups:$C_5\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:300.42.30.a1.a1300.42.30.a1.b1300.42.30.a1.d1300.42.30.a1.e1300.42.30.a1.f1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_5\times A_4$