Properties

Label 2997.51.3.b1.c1
Order $ 3^{3} \cdot 37 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{111}:C_9$
Order: \(999\)\(\medspace = 3^{3} \cdot 37 \)
Index: \(3\)
Exponent: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Generators: $ab^{2}, b^{111}, b^{9}, a^{3}b^{330}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Ambient group ($G$) information

Description: $C_{333}:C_9$
Order: \(2997\)\(\medspace = 3^{4} \cdot 37 \)
Exponent: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{333}.(C_6\times C_{36})$
$\operatorname{Aut}(H)$ $S_3\times F_{37}$, of order \(7992\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 37 \)
$\operatorname{res}(S)$$S_3\times F_{37}$, of order \(7992\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_{37}:C_9$, of order \(333\)\(\medspace = 3^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_9$
Normalizer:$C_{333}:C_9$
Minimal over-subgroups:$C_{333}:C_9$
Maximal under-subgroups:$C_{111}:C_3$$C_{37}:C_9$$C_{37}:C_9$$C_{37}:C_9$$C_3\times C_9$
Autjugate subgroups:2997.51.3.b1.a12997.51.3.b1.b1

Other information

Möbius function$-1$
Projective image$C_{111}:C_9$