Properties

Label 297.2.11.a1.a1
Order $ 3^{3} $
Index $ 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_9$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(11\)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a, b^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3\times C_{99}$
Order: \(297\)\(\medspace = 3^{3} \cdot 11 \)
Exponent: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{11}$
Order: \(11\)
Exponent: \(11\)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5\times C_6^2:S_3$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{99}$
Normalizer:$C_3\times C_{99}$
Complements:$C_{11}$
Minimal over-subgroups:$C_3\times C_{99}$
Maximal under-subgroups:$C_3^2$$C_9$$C_9$$C_9$

Other information

Möbius function$-1$
Projective image$C_{11}$