Properties

Label 296448.l.98816.a1.a1
Order $ 3 $
Index $ 2^{9} \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(98816\)\(\medspace = 2^{9} \cdot 193 \)
Exponent: \(3\)
Generators: $b^{6176}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{18528}.C_{16}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Order: \(98816\)\(\medspace = 2^{9} \cdot 193 \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Nilpotency class: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{18528}.C_{16}$
Normalizer:$C_{18528}.C_{16}$
Complements:$C_{193}:(C_8\times C_{64})$
Minimal over-subgroups:$C_{579}$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image not computed