Properties

Label 296448.l.6.b1.b1
Order $ 2^{8} \cdot 193 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{3088}.C_{16}$
Order: \(49408\)\(\medspace = 2^{8} \cdot 193 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Generators: $b^{96}, b^{2316}, b^{1158}, a^{3}b^{3}, a^{6}b^{3558}, b^{9264}, a^{12}b^{12684}, a^{8}b^{7408}, b^{4632}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{18528}.C_{16}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{772}.C_{48}.C_4^3$
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{96}$
Normalizer:$C_{18528}.C_{16}$
Minimal over-subgroups:$C_3\times C_{193}:(C_4\times C_{64})$$C_{193}:(C_8\times C_{64})$
Maximal under-subgroups:$C_{3088}.C_8$$D_{193}:C_{64}$$D_{193}:C_{64}$$C_4\times C_{64}$
Autjugate subgroups:296448.l.6.b1.a1

Other information

Möbius function$1$
Projective image not computed