Subgroup ($H$) information
Description: | $C_{3088}.C_{16}$ |
Order: | \(49408\)\(\medspace = 2^{8} \cdot 193 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(12352\)\(\medspace = 2^{6} \cdot 193 \) |
Generators: |
$b^{96}, b^{2316}, b^{1158}, a^{3}b^{3}, a^{6}b^{3558}, b^{9264}, a^{12}b^{12684}, a^{8}b^{7408}, b^{4632}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{18528}.C_{16}$ |
Order: | \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1544}.C_{24}.C_4^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_{772}.C_{48}.C_4^3$ |
$W$ | $C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | not computed |