Subgroup ($H$) information
Description: | $C_{16}\times D_{193}$ |
Order: | \(6176\)\(\medspace = 2^{5} \cdot 193 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Generators: |
$b^{4632}, b^{9264}, b^{96}, b^{2316}, b^{1158}, a^{8}b^{16984}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{18528}.C_{16}$ |
Order: | \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_{24}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1544}.C_{24}.C_4^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_5^4:(C_2^2\times C_4)$, of order \(592896\)\(\medspace = 2^{10} \cdot 3 \cdot 193 \) |
$W$ | $C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | not computed |