Properties

Label 296448.l.4.d1.b1
Order $ 2^{7} \cdot 3 \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $b^{96}, a^{2}b^{14596}, b^{2316}, ab^{3842}, b^{6176}, b^{9264}, a^{4}b^{10088}, a^{8}b^{18160}, b^{4632}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, metacyclic, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{18528}.C_{16}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ not computed
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{96}$
Normalizer:$C_{18528}.C_{16}$
Minimal over-subgroups:$C_3\times C_{193}:(C_4\times C_{64})$
Maximal under-subgroups:$C_3\times C_{193}:(C_2\times C_{32})$$C_3\times C_{193}:C_{64}$$C_3\times C_{193}:C_{64}$$D_{193}:C_{64}$$C_2\times C_{192}$
Autjugate subgroups:296448.l.4.d1.a1296448.l.4.d1.c1296448.l.4.d1.d1

Other information

Möbius function$0$
Projective image$C_{772}:C_{16}$