Properties

Label 296448.l.192.a1.a1
Order $ 2^{3} \cdot 193 $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_{193}$
Order: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Generators: $a^{8}b^{3076}, b^{13896}, b^{96}, b^{9264}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{18528}.C_{16}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4\times C_{48}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $C_2^6.D_4$, of order \(512\)\(\medspace = 2^{9} \)
Outer Automorphisms: $C_2^6.D_4$, of order \(512\)\(\medspace = 2^{9} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{193}.C_{96}.C_2^3$
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{96}$
Normalizer:$C_{18528}.C_{16}$
Minimal over-subgroups:$C_{12}\times D_{193}$$C_{772}:C_4$$C_8\times D_{193}$$D_{193}:C_8$
Maximal under-subgroups:$D_{386}$$C_{772}$$C_{193}:C_4$$C_2\times C_4$

Other information

Möbius function$0$
Projective image not computed