Properties

Label 296448.l.128.a1.a1
Order $ 2^{2} \cdot 3 \cdot 193 $
Index $ 2^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{386}$
Order: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Generators: $a^{8}b^{3076}, b^{9264}, b^{96}, b^{6176}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{18528}.C_{16}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4\times C_{32}$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Automorphism Group: $C_4^2.(C_2^2\times D_4)$, of order \(512\)\(\medspace = 2^{9} \)
Outer Automorphisms: $C_4^2.(C_2^2\times D_4)$, of order \(512\)\(\medspace = 2^{9} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{193}.C_{96}.C_2^3$
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{96}$
Normalizer:$C_{18528}.C_{16}$
Minimal over-subgroups:$C_{12}\times D_{193}$$C_6\times C_{193}:C_4$$C_6\times C_{193}:C_4$
Maximal under-subgroups:$C_{1158}$$C_3\times D_{193}$$C_3\times D_{193}$$D_{386}$$C_2\times C_6$

Other information

Möbius function$0$
Projective image$C_{3088}.C_{16}$