Subgroup ($H$) information
Description: | $C_{1544}:C_4$ |
Order: | \(6176\)\(\medspace = 2^{5} \cdot 193 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(1544\)\(\medspace = 2^{3} \cdot 193 \) |
Generators: |
$b^{772}, b^{1544}, b^{16}, a^{48}, b^{386}, a^{24}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{3088}:C_{96}$ |
Order: | \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \) |
Exponent: | \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_{24}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1544}.C_{96}.C_2.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_{386}.C_{96}.C_2^4$ |
$W$ | $C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{386}:C_{96}$ |