Properties

Label 296.8.148.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 148 & 0 \\ 0 & 148 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{37}:D_4$
Order: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Exponent: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{74}$
Order: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Automorphism Group: $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \)
Outer Automorphisms: $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{37}:(C_2\times C_{36})$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{37}:D_4$
Normalizer:$C_{37}:D_4$
Minimal over-subgroups:$C_{74}$$C_2^2$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-74$
Projective image$D_{74}$