Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(148\)\(\medspace = 2^{2} \cdot 37 \) |
Exponent: | \(2\) |
Generators: |
$\left(\begin{array}{rr}
148 & 0 \\
0 & 148
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{37}:D_4$ |
Order: | \(296\)\(\medspace = 2^{3} \cdot 37 \) |
Exponent: | \(148\)\(\medspace = 2^{2} \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_{74}$ |
Order: | \(148\)\(\medspace = 2^{2} \cdot 37 \) |
Exponent: | \(74\)\(\medspace = 2 \cdot 37 \) |
Automorphism Group: | $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \) |
Outer Automorphisms: | $C_2\times C_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{37}:(C_2\times C_{36})$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{37}:D_4$ | |||
Normalizer: | $C_{37}:D_4$ | |||
Minimal over-subgroups: | $C_{74}$ | $C_2^2$ | $C_2^2$ | $C_4$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $-74$ |
Projective image | $D_{74}$ |