Properties

Label 292820.s.13310.g1
Order $ 2 \cdot 11 $
Index $ 2 \cdot 5 \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{11}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{55}d, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_{11}^3:C_{110}$
Order: \(292820\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{11}^2.C_{10}^2.C_2$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{22}\times F_{11}$
Normal closure:$C_{11}^3:C_2$
Core:$C_{11}$
Minimal over-subgroups:$C_{11}\times D_{11}$$C_{11}:D_{11}$$C_{11}:D_{11}$$F_{11}$$D_{22}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of subgroups in this autjugacy class$242$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2\times C_{11}^3:C_{110}$