Properties

Label 2916.mh.6.i1.b1
Order $ 2 \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times C_9):C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $d^{9}, f, e, bd^{10}, cd^{8}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_3^2\times C_9):S_3^2$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^3:C_6^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_3^3:C_6^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^3:C_6$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)

Related subgroups

Centralizer:$C_9$
Normalizer:$(C_3^3\times C_9):C_6$
Normal closure:$(C_3^3\times C_9):C_6$
Core:$C_3^3:C_6$
Minimal over-subgroups:$(C_3^3\times C_9):C_6$
Maximal under-subgroups:$C_9:\He_3$$C_3^3:C_6$$C_3^3.C_6$$C_3^2:C_{18}$$C_3^2:C_{18}$$C_3^2:C_{18}$
Autjugate subgroups:2916.mh.6.i1.a12916.mh.6.i1.c1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_3^3:S_3^2$