Properties

Label 2916.lt.6.g1
Order $ 2 \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(7,8,9)(10,11,12)(13,14,15), (1,3,2)(4,6,5)(10,15,12,14,11,13), (10,12,11)(13,14,15), (1,3,2), (7,14,11)(8,15,12)(9,13,10), (1,2,3)(4,5,6)(13,14,15)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times (C_3\times \PSU(3,2)).S_3^3$
$\operatorname{Aut}(H)$ $C_3^3.S_3^3$
$\operatorname{res}(S)$$C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^5:S_3$
Normal closure:$C_3^5:S_3$
Core:$C_3^3:S_3$
Minimal over-subgroups:$C_3^5:S_3$
Maximal under-subgroups:$C_3^4:C_3$$C_3^3:S_3$$S_3\times C_3^3$$C_3\wr S_3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^3:S_3^2$