Properties

Label 2916.lt.6.d1
Order $ 2 \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,8,9)(10,11,12)(13,14,15), (10,12,11)(13,14,15), (1,3,2), (1,2)(4,5), (7,14,11)(8,15,12)(9,13,10), (1,3,2)(4,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times (C_3\times \PSU(3,2)).S_3^3$
$\operatorname{Aut}(H)$ $\AGL(2,3)^2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^5:D_6$
Complements:$C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_3^5:C_6$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^2\times \He_3$$C_3^2\wr C_2$$S_3\times \He_3$$C_3^2\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^3:S_3^2$