Properties

Label 2916.lt.162.a1
Order $ 2 \cdot 3^{2} $
Index $ 2 \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,2), (1,2)(4,5), (1,3,2)(4,6,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3\wr S_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times (C_3\times \PSU(3,2)).S_3^3$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\wr S_3$
Normalizer:$C_3^5:D_6$
Complements:$C_3\wr S_3$ $C_3\wr S_3$ $C_3\wr S_3$ $C_3\wr S_3$
Minimal over-subgroups:$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_3^2:C_6$$C_6:S_3$
Maximal under-subgroups:$C_3^2$$S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:D_6$