Properties

Label 289.2.17.a1.d1
Order $ 17 $
Index $ 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{17}$
Order: \(17\)
Index: \(17\)
Exponent: \(17\)
Generators: $ab^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{17}^2$
Order: \(289\)\(\medspace = 17^{2} \)
Exponent: \(17\)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{17}$
Order: \(17\)
Exponent: \(17\)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,17)$, of order \(78336\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(272\)\(\medspace = 2^{4} \cdot 17 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{17}^2$
Normalizer:$C_{17}^2$
Complements:$C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$ $C_{17}$
Minimal over-subgroups:$C_{17}^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:289.2.17.a1.a1289.2.17.a1.b1289.2.17.a1.c1289.2.17.a1.e1289.2.17.a1.f1289.2.17.a1.g1289.2.17.a1.h1289.2.17.a1.i1289.2.17.a1.j1289.2.17.a1.k1289.2.17.a1.l1289.2.17.a1.m1289.2.17.a1.n1289.2.17.a1.o1289.2.17.a1.p1289.2.17.a1.q1289.2.17.a1.r1

Other information

Möbius function$-1$
Projective image$C_{17}$