Subgroup ($H$) information
| Description: | $C_2\times C_4$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Index: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | $\langle(2,3)(4,5), (2,4,3,5), (7,8)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $S_3\times F_5\times S_4$ | 
| Order: | \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| $\operatorname{res}(S)$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $15$ | 
| Möbius function | $-12$ | 
| Projective image | $S_3\times F_5\times S_4$ | 
