Subgroup ($H$) information
Description: | $C_6.D_6$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$d^{3}, d^{2}, bc^{10}d^{4}, c^{6}, c^{4}d^{2}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_6^2.D_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2^4.\SL(3,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_2^2$ | ||||
Normalizer: | $C_6^2.D_4$ | ||||
Minimal over-subgroups: | $D_6.D_6$ | $C_2^2.S_3^2$ | $C_3^2:\OD_{16}$ | ||
Maximal under-subgroups: | $C_6^2$ | $C_3^2:C_4$ | $C_3^2:C_4$ | $C_6:C_4$ | $C_6:C_4$ |
Other information
Möbius function | $2$ |
Projective image | $S_3^2:C_2^2$ |