Subgroup ($H$) information
Description: | $C_6:S_3$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$b^{2}c^{5}, c^{6}, c^{4}, d$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
Description: | $C_4.\SOPlus(4,2)$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Centralizer: | $C_4$ | |||
Normalizer: | $C_4.\SOPlus(4,2)$ | |||
Minimal over-subgroups: | $C_{12}:S_3$ | $C_3:D_{12}$ | $C_6.D_6$ | |
Maximal under-subgroups: | $C_3\times C_6$ | $C_3:S_3$ | $D_6$ | $D_6$ |
Other information
Möbius function | $0$ |
Projective image | $S_3^2:C_2^2$ |