Properties

Label 288.874.144.a1.a1
Order $ 2 $
Index $ 2^{4} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4.\SOPlus(4,2)$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:\SD_{16}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4.\SOPlus(4,2)$
Normalizer:$C_4.\SOPlus(4,2)$
Minimal over-subgroups:$C_6$$C_6$$C_4$$C_2^2$$C_2^2$$C_4$$C_4$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$S_3^2:C_2^2$