Subgroup ($H$) information
| Description: | $C_{24}:C_2$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$ab^{3}, c^{8}, c^{3}, c^{6}, c^{12}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{24}:D_6$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_6$ | |||
| Normalizer: | $C_{24}:D_6$ | |||
| Complements: | $C_6$ $C_6$ $C_6$ $C_6$ | |||
| Minimal over-subgroups: | $C_{24}:C_6$ | $S_3\times \SD_{16}$ | ||
| Maximal under-subgroups: | $D_{12}$ | $C_3:Q_8$ | $C_{24}$ | $\SD_{16}$ |
Other information
| Möbius function | $1$ |
| Projective image | $C_{12}:D_6$ |