Subgroup ($H$) information
| Description: | $C_3\times D_{12}$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Index: | \(4\)\(\medspace = 2^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $ab^{3}c, c^{8}, c^{18}, b^{2}, c^{12}$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Ambient group ($G$) information
| Description: | $C_{24}:D_6$ | 
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Derived length: | $1$ | 
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) | 
| $\operatorname{Aut}(H)$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
Related subgroups
| Centralizer: | $C_6$ | |||
| Normalizer: | $C_{24}:D_6$ | |||
| Minimal over-subgroups: | $C_{12}:D_6$ | $C_{12}.D_6$ | $C_{24}:C_6$ | |
| Maximal under-subgroups: | $C_3\times C_{12}$ | $C_6\times S_3$ | $D_{12}$ | $C_3\times D_4$ | 
Other information
| Möbius function | $2$ | 
| Projective image | $S_3\times D_4$ | 
