Properties

Label 288.602.2.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{4}, a^{2}, b^{6}, c^{3}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3.S_3^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_2^6.C_2^4.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_2^4:S_4$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^5:D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2^3.S_3^2$
Minimal over-subgroups:$C_2^3.S_3^2$
Maximal under-subgroups:$C_2\times C_6^2$$C_6:C_{12}$$C_6:C_{12}$$C_6.C_2^3$$C_2^2\times C_{12}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$S_3^2$