Properties

Label 2800.c.2.c1.a1
Order $ 2^{3} \cdot 5^{2} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}\times D_{35}$
Order: \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 79 & 0 \\ 0 & 249 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 264 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 86 \end{array}\right), \left(\begin{array}{rr} 86 & 0 \\ 0 & 232 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 128 & 0 \\ 0 & 191 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{140}:C_{10}$
Order: \(2800\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2\times C_6).C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times C_4\times F_5\times F_7$
$\card{\operatorname{res}(S)}$\(13440\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$D_{140}:C_{10}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{140}:C_{10}$
Maximal under-subgroups:$C_5\times D_{70}$$C_5\times C_{140}$$C_{35}:C_{20}$$C_4\times D_{35}$$D_7\times C_{20}$$D_5\times C_{20}$
Autjugate subgroups:2800.c.2.c1.b1

Other information

Möbius function$-1$
Projective image$D_{70}$