Properties

Label 279936.de.6.U
Order $ 2^{6} \cdot 3^{6} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,2,5,9,11,17)(3,7,4,6,12,18)(8,16)(10,15)(13,14)(19,21,24,26)(20,22,25,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.C_6:S_3^2$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^4.C_3^5.C_2^2$
$\operatorname{Aut}(H)$ $(C_2\times C_6^3).C_3^4.C_2^3$
$W$$C_6^4.S_3^2$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_6^4.S_3^2$
Normal closure:$C_3^5.\POPlus(4,3)$
Core:$C_6^4.(C_3\times S_3)$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_6^4.C_6:S_3^2$