Properties

Label 279936.de.18.CC
Order $ 2^{6} \cdot 3^{5} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(19,24)(20,25)(21,26)(22,23), (19,20)(24,25), (2,9,17)(3,4,12)(6,7,18)(8,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4.C_6:S_3^2$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^4.C_3^5.C_2^2$
$\operatorname{Aut}(H)$ $C_6^4.C_6^2.C_2^2$
$W$$C_{11}:D_{11}^2$, of order \(5324\)\(\medspace = 2^{2} \cdot 11^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_6^4:D_6$
Normal closure:$C_3^5.\POPlus(4,3)$
Core:$C_3\times C_6^2.A_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_6^4.C_6:S_3^2$