Properties

Label 2784.g.3.a1.a1
Order $ 2^{5} \cdot 29 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{29}:C_{32}$
Order: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Index: \(3\)
Exponent: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Generators: $a^{8}, a^{16}, b^{3}, a^{4}, a^{2}, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{29}:C_{96}$
Order: \(2784\)\(\medspace = 2^{5} \cdot 3 \cdot 29 \)
Exponent: \(2784\)\(\medspace = 2^{5} \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{29}.(C_2\times C_{28}).C_2^4$
$\operatorname{Aut}(H)$ $C_{29}.(C_4\times C_{56}).C_2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(12992\)\(\medspace = 2^{6} \cdot 7 \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{29}$, of order \(58\)\(\medspace = 2 \cdot 29 \)

Related subgroups

Centralizer:$C_{48}$
Normalizer:$C_{29}:C_{96}$
Complements:$C_3$
Minimal over-subgroups:$C_{29}:C_{96}$
Maximal under-subgroups:$C_{464}$$C_{32}$

Other information

Möbius function$-1$
Projective image$C_3\times D_{29}$