Properties

Label 27792.i.24.a1.a1
Order $ 2 \cdot 3 \cdot 193 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1158}$
Order: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Generators: $b^{2316}, b^{1544}, b^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{4632}:C_6$
Order: \(27792\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times D_5\times A_5$, of order \(1778688\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{4632}$
Normalizer:$C_{4632}:C_6$
Minimal over-subgroups:$C_{1158}:C_3$$C_3\times D_{386}$$C_{2316}$$C_{193}:C_{12}$
Maximal under-subgroups:$C_{579}$$C_{386}$$C_6$

Other information

Möbius function$0$
Projective image not computed