Subgroup ($H$) information
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a^{6}b^{1155}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $C_{2316}:C_{12}$ |
Order: | \(27792\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1158}.C_{96}.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{12}^2$ | |||
Normalizer: | $C_{12}^2$ | |||
Normal closure: | $C_{193}:C_4$ | |||
Core: | $C_2$ | |||
Minimal over-subgroups: | $C_{193}:C_4$ | $C_{12}$ | $C_{12}$ | $C_2\times C_4$ |
Maximal under-subgroups: | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $193$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{1158}:C_{12}$ |