Properties

Label 27792.g.12.d1
Order $ 2^{2} \cdot 3 \cdot 193 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{12}$
Order: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Generators: $a^{6}b^{1155}, b^{772}, b^{12}, b^{1158}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{2316}:C_{12}$
Order: \(27792\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 193 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1158}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_{193}.C_{96}.C_2^3$
$W$$C_{193}:C_{12}$, of order \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{2316}:C_{12}$
Complements:$C_{12}$
Minimal over-subgroups:$C_{579}:C_{12}$$C_{12}\times D_{193}$
Maximal under-subgroups:$C_{1158}$$C_{193}:C_4$$C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{386}:C_{12}$