Properties

Label 27648.ed.24.IX
Order $ 2^{7} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.D_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(5,7), (8,9,14,11)(10,15,12,13), (1,2)(10,13)(12,15), (4,5,7), (8,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2^2\times D_6).S_4^2$
Order: \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4\wr C_2.C_2\times S_4\times S_3$
$\operatorname{Aut}(H)$ $C_6^2.(C_2^4\times A_4).C_2^3$
$W$$D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^4:D_6^2$
Normal closure:$(C_2^2\times C_6):S_4^2$
Core:$C_6.C_2^4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^6.S_3^3$