Properties

Label 2744.r.2.a1.b1
Order $ 2^{2} \cdot 7^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:D_{14}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(2\)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 0 & 6 & 0 \\ 6 & 2 & 2 & 6 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 0 & 6 & 0 \\ 0 & 5 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 2 & 1 & 0 \\ 6 & 3 & 3 & 1 \\ 0 & 4 & 6 & 5 \\ 5 & 0 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 2 & 1 & 2 & 3 \\ 4 & 2 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 6 & 5 & 1 \\ 4 & 3 & 4 & 5 \\ 5 & 6 & 6 & 1 \\ 3 & 5 & 3 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:D_4$
Order: \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7:(C_3\times D_8)$, of order \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{res}(S)$$\He_7:(C_3\times D_4)$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$\He_7:D_4$, of order \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\He_7:D_4$
Complements:$C_2$
Minimal over-subgroups:$\He_7:D_4$
Maximal under-subgroups:$C_7^2:D_7$$C_7^2:C_{14}$$D_7^2$
Autjugate subgroups:2744.r.2.a1.a1

Other information

Möbius function$-1$
Projective image$\He_7:D_4$