Properties

Label 2738.b.37.a1.bh1
Order $ 2 \cdot 37 $
Index $ 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{74}$
Order: \(74\)\(\medspace = 2 \cdot 37 \)
Index: \(37\)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Generators: $b^{37}, ab^{46}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,37$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{37}\times C_{74}$
Order: \(2738\)\(\medspace = 2 \cdot 37^{2} \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 37$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{37}$
Order: \(37\)
Exponent: \(37\)
Automorphism Group: $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Outer Automorphisms: $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,37)$, of order \(1822176\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 19 \cdot 37 \)
$\operatorname{Aut}(H)$ $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{37}\times C_{74}$
Normalizer:$C_{37}\times C_{74}$
Complements:$C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$ $C_{37}$
Minimal over-subgroups:$C_{37}\times C_{74}$
Maximal under-subgroups:$C_{37}$$C_2$
Autjugate subgroups:2738.b.37.a1.a12738.b.37.a1.b12738.b.37.a1.c12738.b.37.a1.d12738.b.37.a1.e12738.b.37.a1.f12738.b.37.a1.g12738.b.37.a1.h12738.b.37.a1.i12738.b.37.a1.j12738.b.37.a1.k12738.b.37.a1.l12738.b.37.a1.m12738.b.37.a1.n12738.b.37.a1.o12738.b.37.a1.p12738.b.37.a1.q12738.b.37.a1.r12738.b.37.a1.s12738.b.37.a1.t12738.b.37.a1.u12738.b.37.a1.v12738.b.37.a1.w12738.b.37.a1.x12738.b.37.a1.y12738.b.37.a1.z12738.b.37.a1.ba12738.b.37.a1.bb12738.b.37.a1.bc12738.b.37.a1.bd12738.b.37.a1.be12738.b.37.a1.bf12738.b.37.a1.bg12738.b.37.a1.bi12738.b.37.a1.bj12738.b.37.a1.bk12738.b.37.a1.bl1

Other information

Möbius function$-1$
Projective image$C_{37}$