Properties

Label 27216.a.1296.d1.b1
Order $ 3 \cdot 7 $
Index $ 2^{4} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_3$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $\langle(1,2,3)(7,8,11)(10,13,15), (7,10,15,9,8,11,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_3\times S_3\times {}^2G(2,3)$
Order: \(27216\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^2\times {}^2G(2,3)$, of order \(54432\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_3\times S_3$
Normalizer:$C_{21}:C_6^2$
Normal closure:${}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$F_8:C_3$$C_{21}:C_3$$C_{21}:C_3$$C_{21}:C_3$$C_7:C_6$$F_7$$F_7$
Maximal under-subgroups:$C_7$$C_3$
Autjugate subgroups:27216.a.1296.d1.a127216.a.1296.d1.c1

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$-6$
Projective image$C_3\times S_3\times {}^2G(2,3)$