Properties

Label 27216.a.1008.j1.a1
Order $ 3^{3} $
Index $ 2^{4} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(3\)
Generators: $\langle(4,6,5), (4,5,6)(7,10,8)(9,15,12)(11,14,13), (1,3,2)(4,5,6)(7,8,10)(9,15,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3\times S_3\times {}^2G(2,3)$
Order: \(27216\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^2\times {}^2G(2,3)$, of order \(54432\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 7 \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^3.S_3^2$
Normal closure:$C_3\times {}^2G(2,3)$
Core:$C_3$
Minimal over-subgroups:$C_3^4$$C_9:C_3^2$$C_9:C_3^2$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:C_6$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$
Autjugate subgroups:27216.a.1008.j1.b127216.a.1008.j1.c1

Other information

Number of subgroups in this conjugacy class$28$
Möbius function$0$
Projective image$C_3\times S_3\times {}^2G(2,3)$