Subgroup ($H$) information
Description: | $C_7^5:(C_2^4:A_5)$ |
Order: | \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \) |
Index: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Generators: |
$\langle(1,4)(2,3)(6,7)(15,27,40,17,23,38)(16,26,36,19,22,41)(18,25,37,21,24,39) \!\cdots\! \rangle$
|
Derived length: | $0$ |
The subgroup is nonabelian and perfect (hence nonsolvable).
Ambient group ($G$) information
Description: | $C_7^6.C_2^6.A_6$ |
Order: | \(2710632960\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \cdot 7^{6} \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(16263797760\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5 \cdot 7^{6} \) |
$\operatorname{Aut}(H)$ | $C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $6$ |
Möbius function | not computed |
Projective image | not computed |