Properties

Label 2710632960.b.168.a1.a1
Order $ 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^5:(C_2^4:A_5)$
Order: \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(1,4)(2,3)(6,7)(15,27,40,17,23,38)(16,26,36,19,22,41)(18,25,37,21,24,39) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and perfect (hence nonsolvable).

Ambient group ($G$) information

Description: $C_7^6.C_2^6.A_6$
Order: \(2710632960\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \cdot 7^{6} \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(16263797760\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5 \cdot 7^{6} \)
$\operatorname{Aut}(H)$ $C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed