Properties

Label 27000.d.10.d1.a1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{2} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{4}, d^{3}e^{6}, b^{2}d^{5}e^{10}, d^{5}, b^{3}, e^{3}, d^{10}e^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{15}^2:(S_3\times D_{10})$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5^2\times C_{15}).C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$W$$S_3\times C_5^2:D_6$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:(C_2\times D_6)$
Normal closure:$(C_5\times C_{15}^2):D_6$
Core:$C_{15}^2:S_3$
Minimal over-subgroups:$(C_5\times C_{15}^2):D_6$$C_{15}^2:(C_2\times D_6)$
Maximal under-subgroups:$C_{15}^2:S_3$$C_{15}^2:C_6$$C_{15}^2:S_3$$C_{15}^2:C_2^2$$C_3\times C_5^2:D_6$$C_3\times C_5^2:D_6$$C_3^2:D_6$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_{15}^2:(S_3\times D_{10})$