Properties

Label 27000.b.120.b1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_3^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{4}d^{5}, b^{2}c^{9}d^{3}, c^{3}d^{3}, c^{10}d^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $S_3\times F_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
$W$$S_3\times C_5^2:C_{12}$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{15}^2:(C_6\times F_5)$
Complements:$S_3\times F_5$ $S_3\times F_5$
Minimal over-subgroups:$C_5^3:C_3^2$$C_{15}^2:C_3$$C_5^2:C_3\times S_3$$C_3\times C_5^2:C_6$$(C_5\times C_{15}):C_6$
Maximal under-subgroups:$C_5\times C_{15}$$C_5^2:C_3$$C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^2:(C_6\times F_5)$