Subgroup ($H$) information
| Description: | $C_5^2:C_3^2$ |
| Order: | \(225\)\(\medspace = 3^{2} \cdot 5^{2} \) |
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$a^{4}d^{5}, b^{2}c^{9}d^{3}, c^{3}d^{3}, c^{10}d^{5}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{15}^2:(C_6\times F_5)$ |
| Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
| Description: | $S_3\times F_5$ |
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Automorphism Group: | $S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
| $\operatorname{Aut}(H)$ | $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
| $W$ | $S_3\times C_5^2:C_{12}$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_{15}^2:(C_6\times F_5)$ |