Properties

Label 2700.q.18.c1.b1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_6$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}, c^{3}d^{3}, d^{3}, b^{2}c^{2}d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $F_{25}:C_2$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\operatorname{res}(S)$$F_{25}:C_2$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_5^2:D_6$, of order \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times C_5^2:D_6$
Normal closure:$C_3\times C_5^2:C_6$
Core:$C_5:D_5$
Minimal over-subgroups:$C_3\times C_5^2:C_6$$C_5^2:D_6$
Maximal under-subgroups:$C_5^2:C_3$$C_5:D_5$$C_6$
Autjugate subgroups:2700.q.18.c1.a12700.q.18.c1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_{15}^2:D_6$