Properties

Label 2700.q.12.b1.a1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_3^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $b^{2}c^{7}d^{2}, c^{3}d^{12}, d^{3}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{res}(S)$$F_{25}:D_6$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$(C_5\times C_{15}):D_6$, of order \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:D_6$
Complements:$D_6$ $D_6$ $D_6$
Minimal over-subgroups:$C_{15}^2:C_3$$C_3\times C_5^2:C_6$$C_3\times C_5^2:S_3$$C_3\times C_5^2:S_3$
Maximal under-subgroups:$C_5\times C_{15}$$C_5^2:C_3$$C_3^2$
Autjugate subgroups:2700.q.12.b1.b12700.q.12.b1.c1

Other information

Möbius function$-6$
Projective image$(C_5\times C_{15}):D_6$