Properties

Label 270.22.2.a1.a1
Order $ 3^{3} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(2\)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Generators: $a, b^{18}, b^{60}, b^{20}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_9:C_{30}$
Order: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_{30}$
Normalizer:$C_9:C_{30}$
Complements:$C_2$
Minimal over-subgroups:$C_9:C_{30}$
Maximal under-subgroups:$C_3\times C_{15}$$C_{45}$$C_{45}$$C_{45}$$C_9:C_3$

Other information

Möbius function$-1$
Projective image$C_3\times C_6$