Properties

Label 269568.a.104.B
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{3} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6\times S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(104\)\(\medspace = 2^{3} \cdot 13 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(15,17)(18,19), (1,6,4)(2,10,8)(9,12,13)(14,18)(15,17)(16,19), (14,16)(18,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_4\times \GL(3,3)$
Order: \(269568\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 13 \)
Exponent: \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \SL(3,3).C_2\times S_4$
$\operatorname{Aut}(H)$ $S_4\times \AGL(2,3).C_2^2$
$W$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6^2$
Normal closure:$S_4\times \GL(3,3)$
Core:$C_2\times S_4$
Minimal over-subgroups:$C_6^2:D_6^2$
Maximal under-subgroups:$C_2\times S_4\times \He_3$$C_3^2:D_6\times A_4$$C_2\times \He_3:S_4$$C_6^2:S_3^2$$C_6^2:S_3^2$$C_2\times C_6^2:D_6$$C_6\times S_3\times S_4$$C_6\times S_3\times S_4$$S_3\times C_3^2:D_6$

Other information

Number of subgroups in this autjugacy class$52$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed