Properties

Label 2688.eh.8.bo1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{14}:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{3}, e^{8}, d, e^{28}, b, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_8:C_2^3\times F_7$
Order: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times D_6)$, of order \(172032\)\(\medspace = 2^{13} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7\times A_8$, of order \(846720\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7^{2} \)
$\card{W}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2\times D_4\times F_7$
Normal closure:$C_{14}:C_6\times D_4$
Core:$C_2\times C_{14}:C_6$
Minimal over-subgroups:$C_{14}:C_6\times D_4$$C_2^4\times F_7$$C_2^4:F_7$
Maximal under-subgroups:$C_2\times C_{14}:C_6$$C_2\times C_{14}:C_6$$C_2\times C_{14}:C_6$$C_2\times C_{14}:C_6$$C_2^3\times C_{14}$$C_2^3\times C_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed