Properties

Label 2688.eh.24.bs1
Order $ 2^{4} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, d, e^{28}, c^{3}, e^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_8:C_2^3\times F_7$
Order: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4:(D_4\times D_6)$, of order \(172032\)\(\medspace = 2^{13} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \)
$\card{W}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2\times D_4\times F_7$
Normal closure:$D_4\times D_{14}$
Core:$C_2\times D_{14}$
Minimal over-subgroups:$C_2^3\times F_7$$D_4\times D_{14}$$C_2^3\times D_{14}$$D_4\times D_{14}$
Maximal under-subgroups:$C_2\times D_{14}$$C_2\times D_{14}$$C_2^2\times C_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2^4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed