Subgroup ($H$) information
| Description: | $C_4$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(666\)\(\medspace = 2 \cdot 3^{2} \cdot 37 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $a^{9}b$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_2\times F_{37}$ | 
| Order: | \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \) | 
| Exponent: | \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \) | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(S)$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $37$ | 
| Möbius function | $0$ | 
| Projective image | $C_2\times F_{37}$ |