Properties

Label 266200.bn.2.b1
Order $ 2^{2} \cdot 5^{2} \cdot 11^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_{10}^2$
Order: \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
Index: \(2\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{11}, c, a^{2}, d^{22}, d^{55}, d^{10}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{11}\times C_{110}:F_{11}$
Order: \(266200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5^2.C_{10}^2.C_2^6$
$\operatorname{Aut}(H)$ $C_{11}^2.C_5^2.C_{10}^2.C_2^5$
$W$$C_{22}:F_{11}$, of order \(2420\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$D_{11}\times C_{110}:F_{11}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{11}\times C_{110}:F_{11}$
Maximal under-subgroups:$C_5\times C_{11}^2:C_{110}$$C_{11}\times C_{55}:F_{11}$$C_{11}:D_{11}\times C_{110}$$C_{11}\times C_{22}:F_{11}$$C_{110}:F_{11}$$C_{110}\times F_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_{11}\times C_{11}:F_{11}$